3.152 \(\int x^2 (2+3 x^2) \sqrt{3+5 x^2+x^4} \, dx\)

Optimal. Leaf size=305 \[ \frac{2 \sqrt{\frac{2}{3 \left (5+\sqrt{13}\right )}} \sqrt{\frac{\left (5-\sqrt{13}\right ) x^2+6}{\left (5+\sqrt{13}\right ) x^2+6}} \left (\left (5+\sqrt{13}\right ) x^2+6\right ) \text{EllipticF}\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right ),\frac{1}{6} \left (5 \sqrt{13}-13\right )\right )}{\sqrt{x^4+5 x^2+3}}+\frac{1}{35} \left (15 x^2+29\right ) \sqrt{x^4+5 x^2+3} x^3-\frac{4}{3} \sqrt{x^4+5 x^2+3} x+\frac{1247 \left (2 x^2+\sqrt{13}+5\right ) x}{210 \sqrt{x^4+5 x^2+3}}-\frac{1247 \sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} \sqrt{\frac{\left (5-\sqrt{13}\right ) x^2+6}{\left (5+\sqrt{13}\right ) x^2+6}} \left (\left (5+\sqrt{13}\right ) x^2+6\right ) E\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{210 \sqrt{x^4+5 x^2+3}} \]

[Out]

(1247*x*(5 + Sqrt[13] + 2*x^2))/(210*Sqrt[3 + 5*x^2 + x^4]) - (4*x*Sqrt[3 + 5*x^2 + x^4])/3 + (x^3*(29 + 15*x^
2)*Sqrt[3 + 5*x^2 + x^4])/35 - (1247*Sqrt[(5 + Sqrt[13])/6]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + Sqrt[13])*
x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticE[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/(210*Sqrt[3
+ 5*x^2 + x^4]) + (2*Sqrt[2/(3*(5 + Sqrt[13]))]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + Sqrt[13])*x^2)]*(6 + (
5 + Sqrt[13])*x^2)*EllipticF[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/Sqrt[3 + 5*x^2 + x^4]

________________________________________________________________________________________

Rubi [A]  time = 0.202803, antiderivative size = 305, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {1273, 1279, 1189, 1099, 1135} \[ \frac{1}{35} \left (15 x^2+29\right ) \sqrt{x^4+5 x^2+3} x^3-\frac{4}{3} \sqrt{x^4+5 x^2+3} x+\frac{1247 \left (2 x^2+\sqrt{13}+5\right ) x}{210 \sqrt{x^4+5 x^2+3}}+\frac{2 \sqrt{\frac{2}{3 \left (5+\sqrt{13}\right )}} \sqrt{\frac{\left (5-\sqrt{13}\right ) x^2+6}{\left (5+\sqrt{13}\right ) x^2+6}} \left (\left (5+\sqrt{13}\right ) x^2+6\right ) F\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{\sqrt{x^4+5 x^2+3}}-\frac{1247 \sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} \sqrt{\frac{\left (5-\sqrt{13}\right ) x^2+6}{\left (5+\sqrt{13}\right ) x^2+6}} \left (\left (5+\sqrt{13}\right ) x^2+6\right ) E\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{210 \sqrt{x^4+5 x^2+3}} \]

Antiderivative was successfully verified.

[In]

Int[x^2*(2 + 3*x^2)*Sqrt[3 + 5*x^2 + x^4],x]

[Out]

(1247*x*(5 + Sqrt[13] + 2*x^2))/(210*Sqrt[3 + 5*x^2 + x^4]) - (4*x*Sqrt[3 + 5*x^2 + x^4])/3 + (x^3*(29 + 15*x^
2)*Sqrt[3 + 5*x^2 + x^4])/35 - (1247*Sqrt[(5 + Sqrt[13])/6]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + Sqrt[13])*
x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticE[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/(210*Sqrt[3
+ 5*x^2 + x^4]) + (2*Sqrt[2/(3*(5 + Sqrt[13]))]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + Sqrt[13])*x^2)]*(6 + (
5 + Sqrt[13])*x^2)*EllipticF[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/Sqrt[3 + 5*x^2 + x^4]

Rule 1273

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[((f
*x)^(m + 1)*(a + b*x^2 + c*x^4)^p*(b*e*2*p + c*d*(m + 4*p + 3) + c*e*(4*p + m + 1)*x^2))/(c*f*(4*p + m + 1)*(m
 + 4*p + 3)), x] + Dist[(2*p)/(c*(4*p + m + 1)*(m + 4*p + 3)), Int[(f*x)^m*(a + b*x^2 + c*x^4)^(p - 1)*Simp[2*
a*c*d*(m + 4*p + 3) - a*b*e*(m + 1) + (2*a*c*e*(4*p + m + 1) + b*c*d*(m + 4*p + 3) - b^2*e*(m + 2*p + 1))*x^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && NeQ[4*p + m + 1, 0] && N
eQ[m + 4*p + 3, 0] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1279

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(e*f
*(f*x)^(m - 1)*(a + b*x^2 + c*x^4)^(p + 1))/(c*(m + 4*p + 3)), x] - Dist[f^2/(c*(m + 4*p + 3)), Int[(f*x)^(m -
 2)*(a + b*x^2 + c*x^4)^p*Simp[a*e*(m - 1) + (b*e*(m + 2*p + 1) - c*d*(m + 4*p + 3))*x^2, x], x], x] /; FreeQ[
{a, b, c, d, e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[m, 1] && NeQ[m + 4*p + 3, 0] && IntegerQ[2*p] && (Inte
gerQ[p] || IntegerQ[m])

Rule 1189

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[d, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[e, Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b +
 q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1099

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[((2*a + (b +
q)*x^2)*Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticF[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)]
)/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSq
rtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1135

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(x*(b +
q + 2*c*x^2))/(2*c*Sqrt[a + b*x^2 + c*x^4]), x] - Simp[(Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*Sqrt[(2*a + (
b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticE[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)])/(2*c*Sqrt[a + b*x^2
 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; Fre
eQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int x^2 \left (2+3 x^2\right ) \sqrt{3+5 x^2+x^4} \, dx &=\frac{1}{35} x^3 \left (29+15 x^2\right ) \sqrt{3+5 x^2+x^4}+\frac{1}{35} \int \frac{x^2 \left (-51-140 x^2\right )}{\sqrt{3+5 x^2+x^4}} \, dx\\ &=-\frac{4}{3} x \sqrt{3+5 x^2+x^4}+\frac{1}{35} x^3 \left (29+15 x^2\right ) \sqrt{3+5 x^2+x^4}-\frac{1}{105} \int \frac{-420-1247 x^2}{\sqrt{3+5 x^2+x^4}} \, dx\\ &=-\frac{4}{3} x \sqrt{3+5 x^2+x^4}+\frac{1}{35} x^3 \left (29+15 x^2\right ) \sqrt{3+5 x^2+x^4}+4 \int \frac{1}{\sqrt{3+5 x^2+x^4}} \, dx+\frac{1247}{105} \int \frac{x^2}{\sqrt{3+5 x^2+x^4}} \, dx\\ &=\frac{1247 x \left (5+\sqrt{13}+2 x^2\right )}{210 \sqrt{3+5 x^2+x^4}}-\frac{4}{3} x \sqrt{3+5 x^2+x^4}+\frac{1}{35} x^3 \left (29+15 x^2\right ) \sqrt{3+5 x^2+x^4}-\frac{1247 \sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} \sqrt{\frac{6+\left (5-\sqrt{13}\right ) x^2}{6+\left (5+\sqrt{13}\right ) x^2}} \left (6+\left (5+\sqrt{13}\right ) x^2\right ) E\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{210 \sqrt{3+5 x^2+x^4}}+\frac{2 \sqrt{\frac{2}{3 \left (5+\sqrt{13}\right )}} \sqrt{\frac{6+\left (5-\sqrt{13}\right ) x^2}{6+\left (5+\sqrt{13}\right ) x^2}} \left (6+\left (5+\sqrt{13}\right ) x^2\right ) F\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{\sqrt{3+5 x^2+x^4}}\\ \end{align*}

Mathematica [C]  time = 0.286797, size = 234, normalized size = 0.77 \[ \frac{-i \sqrt{2} \left (1247 \sqrt{13}-5395\right ) \sqrt{\frac{-2 x^2+\sqrt{13}-5}{\sqrt{13}-5}} \sqrt{2 x^2+\sqrt{13}+5} \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{\frac{2}{5+\sqrt{13}}} x\right ),\frac{19}{6}+\frac{5 \sqrt{13}}{6}\right )+4 x \left (45 x^8+312 x^6+430 x^4-439 x^2-420\right )+1247 i \sqrt{2} \left (\sqrt{13}-5\right ) \sqrt{\frac{-2 x^2+\sqrt{13}-5}{\sqrt{13}-5}} \sqrt{2 x^2+\sqrt{13}+5} E\left (i \sinh ^{-1}\left (\sqrt{\frac{2}{5+\sqrt{13}}} x\right )|\frac{19}{6}+\frac{5 \sqrt{13}}{6}\right )}{420 \sqrt{x^4+5 x^2+3}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^2*(2 + 3*x^2)*Sqrt[3 + 5*x^2 + x^4],x]

[Out]

(4*x*(-420 - 439*x^2 + 430*x^4 + 312*x^6 + 45*x^8) + (1247*I)*Sqrt[2]*(-5 + Sqrt[13])*Sqrt[(-5 + Sqrt[13] - 2*
x^2)/(-5 + Sqrt[13])]*Sqrt[5 + Sqrt[13] + 2*x^2]*EllipticE[I*ArcSinh[Sqrt[2/(5 + Sqrt[13])]*x], 19/6 + (5*Sqrt
[13])/6] - I*Sqrt[2]*(-5395 + 1247*Sqrt[13])*Sqrt[(-5 + Sqrt[13] - 2*x^2)/(-5 + Sqrt[13])]*Sqrt[5 + Sqrt[13] +
 2*x^2]*EllipticF[I*ArcSinh[Sqrt[2/(5 + Sqrt[13])]*x], 19/6 + (5*Sqrt[13])/6])/(420*Sqrt[3 + 5*x^2 + x^4])

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 243, normalized size = 0.8 \begin{align*}{\frac{3\,{x}^{5}}{7}\sqrt{{x}^{4}+5\,{x}^{2}+3}}+{\frac{29\,{x}^{3}}{35}\sqrt{{x}^{4}+5\,{x}^{2}+3}}-{\frac{4\,x}{3}\sqrt{{x}^{4}+5\,{x}^{2}+3}}+24\,{\frac{\sqrt{1- \left ( -5/6+1/6\,\sqrt{13} \right ){x}^{2}}\sqrt{1- \left ( -5/6-1/6\,\sqrt{13} \right ){x}^{2}}{\it EllipticF} \left ( 1/6\,x\sqrt{-30+6\,\sqrt{13}},5/6\,\sqrt{3}+1/6\,\sqrt{39} \right ) }{\sqrt{-30+6\,\sqrt{13}}\sqrt{{x}^{4}+5\,{x}^{2}+3}}}-{\frac{14964}{35\,\sqrt{-30+6\,\sqrt{13}} \left ( \sqrt{13}+5 \right ) }\sqrt{1- \left ( -{\frac{5}{6}}+{\frac{\sqrt{13}}{6}} \right ){x}^{2}}\sqrt{1- \left ( -{\frac{5}{6}}-{\frac{\sqrt{13}}{6}} \right ){x}^{2}} \left ({\it EllipticF} \left ({\frac{x\sqrt{-30+6\,\sqrt{13}}}{6}},{\frac{5\,\sqrt{3}}{6}}+{\frac{\sqrt{39}}{6}} \right ) -{\it EllipticE} \left ({\frac{x\sqrt{-30+6\,\sqrt{13}}}{6}},{\frac{5\,\sqrt{3}}{6}}+{\frac{\sqrt{39}}{6}} \right ) \right ){\frac{1}{\sqrt{{x}^{4}+5\,{x}^{2}+3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(3*x^2+2)*(x^4+5*x^2+3)^(1/2),x)

[Out]

3/7*x^5*(x^4+5*x^2+3)^(1/2)+29/35*x^3*(x^4+5*x^2+3)^(1/2)-4/3*x*(x^4+5*x^2+3)^(1/2)+24/(-30+6*13^(1/2))^(1/2)*
(1-(-5/6+1/6*13^(1/2))*x^2)^(1/2)*(1-(-5/6-1/6*13^(1/2))*x^2)^(1/2)/(x^4+5*x^2+3)^(1/2)*EllipticF(1/6*x*(-30+6
*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2))-14964/35/(-30+6*13^(1/2))^(1/2)*(1-(-5/6+1/6*13^(1/2))*x^2)^(1/2)*(
1-(-5/6-1/6*13^(1/2))*x^2)^(1/2)/(x^4+5*x^2+3)^(1/2)/(13^(1/2)+5)*(EllipticF(1/6*x*(-30+6*13^(1/2))^(1/2),5/6*
3^(1/2)+1/6*39^(1/2))-EllipticE(1/6*x*(-30+6*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{x^{4} + 5 \, x^{2} + 3}{\left (3 \, x^{2} + 2\right )} x^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(3*x^2+2)*(x^4+5*x^2+3)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x^4 + 5*x^2 + 3)*(3*x^2 + 2)*x^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (3 \, x^{4} + 2 \, x^{2}\right )} \sqrt{x^{4} + 5 \, x^{2} + 3}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(3*x^2+2)*(x^4+5*x^2+3)^(1/2),x, algorithm="fricas")

[Out]

integral((3*x^4 + 2*x^2)*sqrt(x^4 + 5*x^2 + 3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{2} \left (3 x^{2} + 2\right ) \sqrt{x^{4} + 5 x^{2} + 3}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(3*x**2+2)*(x**4+5*x**2+3)**(1/2),x)

[Out]

Integral(x**2*(3*x**2 + 2)*sqrt(x**4 + 5*x**2 + 3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{x^{4} + 5 \, x^{2} + 3}{\left (3 \, x^{2} + 2\right )} x^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(3*x^2+2)*(x^4+5*x^2+3)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(x^4 + 5*x^2 + 3)*(3*x^2 + 2)*x^2, x)